skip to main content


Search for: All records

Creators/Authors contains: "Scarpulla, Michael A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Thermoelectrics (TEs) are an important class of technology that harvest electric power directly from heat sources. When designing both high performance and environmentally friendly TE materials, the pseudo-cubic structure has great theoretical potential to maximize the dimensionless figure of merit ZT . The TE multinary single crystal with a pseudo-cubic structure paves a new path toward manipulating valley degeneracy and anisotropy with low thermal conductivity caused by short-range lattice distortion. Here, we report a record high ZT = 1.6 around 800 K realized in a totally environmentally benign p-type Na-doped Cu 2 ZnSnS 4 (CZTS) single crystal. The exceptional performance comes from a high power factor while maintaining intrinsically low thermal conductivity. The combination of the pseudo-cubic structure and intrinsic properties of the CZTS single crystal takes advantage of simple material tuning without complex techniques. 
    more » « less
  3. null (Ed.)
  4. In this work, we report the different effects of CdCl 2 treatment on CdTe films deposited by thermal evaporation onto CdS and MgZnO (MZO) buffer layers. The main finding, which is relevant for understanding recent advances in CdTe device efficiency, is that few-μm thick CdTe films deposited on MZO can be induced to completely recrystallize forming a film consisting of grains that span the film thickness and are up to 30 μm laterally. On CdS buffer layers, the changes in microstructure with Cl treatment are much less pronounced and the final microstructure is less ideal for thin film photovoltaics. We propose a thermodynamic framework for understanding the microstructural changes during CdCl 2 treatment which can assist in understanding the wide range of behaviors observed across the many CdTe thin film solar cell fabrication procedures. 
    more » « less
  5. Abstract

    Despite numerous studies on three-dimensional topological insulators (3D TIs), the controlled growth of high quality (bulk-insulating and high mobility) TIs remains a challenging subject. This study investigates the role of growth methods on the synthesis of single crystal stoichiometric BiSbTeSe2(BSTS). Three types of BSTS samples are prepared using three different methods, namely melting growth (MG), Bridgman growth (BG) and two-step melting-Bridgman growth (MBG). Our results show that the crystal quality of the BSTS depend strongly on the growth method. Crystal structure and composition analyses suggest a better homogeneity and highly-ordered crystal structure in BSTS grown by MBG method. This correlates well to sample electrical transport properties, where a substantial improvement in surface mobility is observed in MBG BSTS devices. The enhancement in crystal quality and mobility allow the observation of well-developed quantum Hall effect at low magnetic field.

     
    more » « less
  6. Abstract

    High quality dielectric‐semiconductor interfaces are critical for reliable high‐performance transistors. This paper reports the in situ metal–organic chemical vapor deposition of Al2O3on β‐Ga2O3as a potentially better alternative to the most commonly used atomic layer deposition (ALD). The growth of Al2O3is performed in the same reactor as Ga2O3using trimethylaluminum and O2as precursors without breaking the vacuum at a growth temperature of 600 °C. The fast and slow near interface traps at the Al2O3/β‐Ga2O3interface are identified and quantified using stressed capacitance–voltage (CV) measurements on metal oxide semiconductor capacitor (MOSCAP) structures. The density of shallow and deep level initially filled traps (Dit) are measured using ultraviolet‐assisted CV technique. The average Ditfor the MOSCAP is determined to be 6.4×1011cm−2eV−1. The conduction band offset of the Al2O3/ Ga2O3interface is also determined from CV measurements and found out to be 1.7 eV which is in close agreement with the existing literature reports of ALD Al2O3/Ga2O3interface. The current–voltage characteristics are also analyzed and the average breakdown field is extracted to be approximately 5.8 MV cm−1. This in situ Al2O3dielectric on β‐Ga2O3with improved dielectric properties can enable Ga2O3‐based high‐performance devices.

     
    more » « less
  7. Abstract

    Recent advances in device design and process optimizations have enabled the production of CdTe devices on flexible substrates, but the necessary high‐temperature processing (>450 °C) to recrystallize grains limits the use of alternative lightweight substrates. Here, a new synthesis method is reported to create a freestanding CdS/CdTe film by combining high‐temperature depositions (CdS/CdTe on Si/SiO2) and a simple lift‐off process in a water environment at room temperature. Analysis of the results indicate that the delamination is facilitated by the innate lattice mismatch as well as the presence of an unexpected Te‐rich layer (≈20 nm), which accumulates on the SiO2surface. High‐resolution electron microscopy and spectroscopy measurements confirm that the CdS/CdTe film is physically liberated from the substrate without leaving any residue, while also preserving their initial structural and compositional properties.

     
    more » « less